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Abstract 

As part of the George B. Moody PhysioNet Challenge 
2023, our team, Swarthbeat, developed a computational 
approach that uses electroencephalograms (EEGs) to 
predict the neurological recovery of patients following 
cardiac arrest. Our method involved selecting a small 
number of significant features from a much larger set by 
optimization based on the PhysioNet Challenge score. 
Significance was determined using a bagged tree ensemble 
method. The model for our highest ranking entry was 
trained using this smaller set of features with adaptive 
boosting.   Our model received a Challenge score of 0.52 
(17th out of 36 ranked teams) on the hidden test set. 

 
 

1. Introduction 

The goal of the 2023 George B. Moody PhysioNet 
Challenge is to develop open-source software to predict 
good and poor neurological outcome for patients after 
cardiac arrest using longitudinal electroencephalogram 
(EEG) and other recordings [1, 2]. Data for this challenge 
is described in Amorim et al. (2023) [3].  

Many features can be extracted from EEG data to 
classify neurological outcome. Additionally, all, some, or 
a combination of the 19 EEG electrodes can be selected. 
Team Swarthbeat’s approach to this Challenge is to treat 
the selection of features and electrodes as an optimization 
problem with the objective being maximization of the true 
positive rate given a false positive rate of less than 5%. 

2. Method 

We used the MATLAB example code provided by the 
Challenge team as a starting point for our processing. 
Although several hours of patient data were available, 
including EEG, electrocardiogram, and other signal types, 
our method used only the last EEG record that passed our 
quality check.  
Pre-processing 
1. For each patient, EEG signals were examined starting 

from the last available record, working backwards to 

the first record. Records recorded at greater than 72 
hours were skipped. 

2. Each EEG signal was resampled to 100 Hz using the 
MATLAB function resample which applies an FIR 
antialiasing lowpass filter and compensates for the 
delay introduced by the filter. 

3. A five-minute segment was extracted from the middle 
of each EEG signal. We found that using the entire 
hour-long signal led to a poorer result. After 
resampling and extracting the five-minute segment, 
the resulting signals were demeaned.   

4. A quality check was performed by examining the 
number of zero values and standard deviation for each 
EEG channel. If the number of zeros exceeded half the 
signal length or the standard deviation was less than 
0.001, for any channel, the record was discarded. 

5. The hours of the last useful record and first record 
were saved to be used as features as described below. 

6. If no EEG data was found, or none passed the quality 
check, that patient instance was flagged as not having 
EEG data. 

7. The unipolar EEG signals were converted to bipolar 
signals by subtracting adjacent channels. The channel 
number, position, and notation are shown in Figure 1. 

 

 
Figure 1. Electrode positions, notation, and 
numbering for the montage used in this study. 
Electrodes that optimized the score are shown in red.     

Feature Extraction 
 Three types of features were obtained: (1) patient 
information; (2) time-domain attributes; and (3) 
frequency-domain attributes.  
 Most patient information features were obtained from 
the header records and are described in Amorim, et al. [3]. 
Three additional patient information features were 
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determined from EEG file names: the hours of the first and 
last EEG recordings and the time difference between these. 
 Time domain features extracted from the EEG signals 
were the standard deviations of the 18 bipolar channels.  
 The majority of the features were determined in the 
frequency domain and are described below. 
• Bandpower – The bandpowers in six frequency regions 
were calculated using the MATLAB function bandpower. 
We found that the upper limit of the useful frequency range 
is 26 Hz. The six frequency regions are:  

 δ:   1 –   3 Hz;           θ: 3 –   6 Hz;        α: 6 – 10 Hz; 
   β: 10 – 26 Hz;  θ−α−β: 3 – 26 Hz;  Total: 0 – 26 Hz. 

• Ratio of bandpowers – The ratios of bandpowers were 
obtained by dividing the bandpowers for the δ/Total, δ/θ, 
δ/α, δ/β; θ/Total, θ/α, θ/β; α/Total, α/β; and β/Total. 
• Slope and 2R for a linear fit to the log of the power 
spectral density (PSD) – For each frequency band, a 
straight line was fit to the log(PSD). The motivation for 
these features is that the slope of the log of the PSD is 
indicative of how the power decreases with increasing 
frequency, f. For example, if the bandpower (P) decreases 
as a power of the frequency (i.e., ( ) 1 nP f f∝ ) the slope 
of the line would be -n. 2R describes of the goodness of fit. 
• Standard deviation of the log of the PSD – The standard 
deviation of the log(PSD) was calculated for each 
frequency band of the 18 bipolar signals. 
• Mean of the magnitude squared coherence estimate – 
The MATLAB function mscohere was used to calculate 
the magnitude squared coherence estimate defined by  

 ( )2
xy xy xx yyC P P P=  

where Pxx and Pyy are the PSD’s of signals x and y, and Pxy 
is the cross-PSD of signals x and y. Signals x and y 
correspond to EEG signals on opposite sides of the brain. 
These features were calculated for all pairs of signals. The 
central electrode signals, Fz-Cz and Cz-Pz, were not used. 
• Cross ratio of bandpowers – The ratio of the difference 
in bandpowers to average bandpower was calculated for 
signals on opposite sides of the brain for each frequency 
band. As was the case for the magnitude squared coherence 
estimate, these features were calculated for all pairs of 
signals excluding the central electrodes. 
 In total, there are 622 features. The feature classes are 
summarized below: 
• 12 patient information features: hospital, age, sex (3 

indicators for male, female, other), ROSC, OHCA, 
VFIB, TTM, first hour, last hour, and hour difference;  

• 18 time-domain features: 18 standard deviations;  
• 108 bandpower features:18 channels x 6 bands; 
• 216 features for PSD: slope, R2, and standard deviations 

for 3 x 18 channels x 4 bands (the Total and θ−α−β 
frequency bands were not used); 

• 180 bandpower ratios: 18 channels for the 10 ratios 
described above; 

• 40 coherence features: 8 pairs of channels for 5 bands 

(the Total frequency band was not used); 
• 48 cross PSD ratios: 8 pairs of channels for 6 bands. 

These features were calculated once for 597 of the 607 
training instances and saved to a spreadsheet. (Ten 
instances did not have useful EEG data.) This facilitated 
the investigation of different classification models, and the 
optimization and cross-validation strategies. 
Selection of Classification Models 

We used the MATLAB classificationLearner app to 
explore a variety of supervised machine learning 
classifiers. classificationLearner provides 32 models, 
including several flavors of decision trees, linear and 
quadratic discriminants, logistic regression, naïve Bayes, 
support vector machines, k-nearest neighbors, neural 
networks, and ensemble methods such as boosted and 
bagged trees. This tool uses k-fold validation (with 5-fold 
as the default) to compute an overall classification 
accuracy and provides a confusion matrix and ROC curve 
for each model. 

The best overall accuracy using all 622 features was 
obtained using ensemble tree methods; in particular 
bootstrap aggregation (MATLAB TreeBagger), adaptive 
boosting (MATLAB AdaBoost), and random under-
sampling boosting (MATLAB RUSBoost). AdaBoost gave 
the highest overall classification accuracy of 78.1%, 
however, the false positive rate was 37.1%.  RUSBoost 
yielded a lower overall accuracy (76.9%) but had a better 
false positive rate (23.5%). TreeBagger had performance 
similar to that of AdaBoost (overall accuracy: 77.4%, false 
positive rate 38.9%). All other models available in 
classificationLearner yielded substantially poorer 
performance with overall classification accuracies on the 
order of 60% and higher false positive rates. The 
preliminary studies using classificationLearner provided 
only the overall classification accuracy, and thus were not 
useful for our objective of optimizing based on the 
Challenge score. However, they did provide insight that 
boosted and bagged tree ensemble methods were the best 
choice for this task, so we limited our consideration of 
classification methods to these two. Additionally, the 
lower false positive rate of RUSBoost motivated us to 
utilize balanced datasets (with equal numbers of poor and 
good outcome instances) in the code developed for our 
Challenge entries.  A final note regarding the choice of 
classification methods: TreeBagger appeared to give the 
best results in our cross-validation studies and enabled the 
determination of feature significance. However, we found 
that AdaBoost produced better scores on the validation data 
used for the official entries.   
Optimization Methodology 
 A 5-fold cross-validation strategy with balanced datasets 
was utilized to estimate classification scores and feature 
significance.   
Cross Validation Strategy: 
For the training data, 63% of the patients (382/607) had 
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poor outcomes while 37% (225/607) had good outcomes. 
To obtain balanced datasets for training, the poor-outcome 
class was randomly sampled to obtain the same number of 
instances as the good-outcome class. This random 
sampling was performed some number of times (typically 
10 to 20) to ensure that training was exposed to all poor-
outcome instances. For each iteration of balanced subset 
selection, 5-fold cross validation was performed to 
estimate the Challenge score. Additionally, a measure of 
feature significance was obtained. As described in the 
Feature Selection subsection, 597 training instances had 
good EEG data. Of these, 221 were good-outcome 
instances. After randomly selecting 221 poor-outcome 
instances, these two groups were randomized and divided 
into 5 subsets with 44 instances in four of them and 45 in 
the remaining one. The good and poor outcome instances 
in each subset were combined to yield 5 balanced sets 
containing 88 (or 90 in one case) instances. Training was 
performed using 4 of these subsets (~352 instances) to 
obtain a model. This model was then used to predict the 
outcome probabilities of the instances in the remaining set. 
The sets were permuted so that each subset was treated as 
a test set. A score was obtained for each of the subsets, and 
those scores averaged to obtain a predicted score for each 
balanced subset iteration.  Final predicted scores were 
obtained by averaging over the balanced subset iterations. 
Feature Significance Estimation: 
 To select an optimum subset of 622 features described 
above, we utilized the OOBPredictorImportance option 
available in TreeBagger, which predicts feature 
importance using out-of-bag instances. This method 
involves training an ensemble of trees and using each tree 
to predict the outcome of instances not seen during 
training. The out-of-bag accuracy is stored for each tree. 
The values of features are then randomly perturbed and the 
out-of-bag accuracy is again calculated. A large increase in 
error indicates a high importance for that feature while a 
small change suggests low significance. 
 Estimates of feature significance were aggregated in an 
initial phase of the cross-validation strategy. For this 
phase, 20 randomly balanced subsets were used. With 5-
fold cross validation, this yielded 100 significance 
estimates for each of the 622 features. These individual 
significance estimates were then averaged to obtain a final 
significance value. Figure 2 shows a bar graph of the 
significance for these features.  
Selection of features to maximize the Challenge score: 
 The selection of features to maximize the Challenge 
score was accomplished by varying the threshold for 
feature significance. For each threshold, the subset of 
features exceeding that value was used with the cross-
validation strategy to make a prediction for the Challenge 
score. The threshold yielding the maximum score resulted 
in 24 features selected from attributes scattered across 
several electrodes and attribute groups. The score 

predicted by cross validation was 0.581, however, our 
official Challenge entry using these features for the 
validation data produced a score of only 0.478.  This 
strategy turned out to be an ineffective one since all of the 
training data was exposed during the feature significance 
determination, thus resulting in overtraining. 
 Accordingly, we adopted an alternative strategy yielding 
better scores that involved eliminating groups of attributes. 
If a class of attributes had low significance for all EEG 
channels, we eliminated that group from consideration.  
This resulted in a much smaller set of features: Age, VFIB; 
δ, θ, α, and β bandpowers; ratio of bandpowers for δ/θ, 
and δ/α;  slope and R2 for only the δ band; and coherence 
for δ, θ, and α bands. Using all EEG channels, this reduced 
the number of features to 170. The Challenge entry using 
these features resulted in a score of 0.687. 
 A final phase of optimization was used to determine if a 
subset of EEG channels would improve our score. Rather 
than investigating individual channels, we chose to 
consider channels in pairs for opposite sides of the brain 
(e.g., Fp1-F7 / Fp2-F8), since the coherence estimate 
utilized these pairs. Additionally, we combined the central 
channels (Fz-Cz / Cz-Pz) into one pair.  With 9 pairs, there 
are 511 possibilities so we were able to exhaustively search 
for the optimum combination. Several combinations 
yielded similar scores, however, all of the combinations 
with high scores in our cross-validation study included 
either F7-T3 / F8-T4, or T3-T5 / T4-T6 or both. For our 
Challenge entries, we choose two of these combinations; 
one with a larger number of channels (10): F7-T3 / F8-T4; 
T3-T5 / T4-T6; Fp1-F3 / FP2-F4; C3-P3 / C4-P4; P3-O1 / 
P4-O2 and one with a smaller number (6): F7-T3 / F8-T4; 
T3-T5 / T4-T6; C3-P3 / C4-P4.  The entry using 6 channels 
produced our best score on the validation data. The 6 
channels are show in red on Fig. 1. 
 In order to implement balanced sets for the code used in 
our Challenge entries, we randomly sampled the poor-
outcome cases to obtain the same number as good-outcome 
cases ten times and constructed ten different models. The 
code used to predict the outcome for validation or test data 
determined the class probability by averaging the 
probabilities for the ten models. If no EEG data was 
available, the value of VFIB was used for the prediction.  

3. Results 

We reduced the initial 622 features from patient-
information, 1 time-domain class, and 7 frequency-domain 
classes to 170 by thresholding on a significance measure 
determined using bootstrap aggregation (TreeBagger) out-
of-bag instances. If all features of a given class had 
significance falling below a threshold, determined by 
maximizing the Challenge score, that class was eliminated. 
We further reduced the number of features to 59 by 
exhaustively searching combinations of EEG channels that  
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Figure 2. Feature significance for 622 features. These were determined using the 
OOBPredictorImportance option in TreeBagger. The blue brackets and arrows at the bottom of 
the figure indicate which features were selected by optimizing the Challenge score.    

 

 
 
 
 

 
 
 
 
 
 
 

maximized the Challenge score. Using multiple balanced 
datasets and an adaptive boosting classifier (AdaBoost) we 
achieved the scores shown in Table 1. 

Training Validation Test Ranking 
0.53±0.17 0.72 0.52 17/36 

Table 1. True positive rate at a false positive rate of 0.05 
(the official Challenge score) for our final selected entry 
(team Swarthbeat), including the ranking of our team on 
the hidden test set. We used 10 randomly selected balanced 
datasets and 5-fold cross validation on the public training 
set, repeated scoring on the hidden validation set, and one-
time scoring on the hidden test set.  

 
4. Discussion and Conclusions 

Our approach involved starting with a large number of 
features which we expected to have a great deal of 
redundancy. The strategy of winnowing this set by 
optimizing on the Challenge score revealed that only about 
1/10 of these features were needed to achieve a relatively 
high score. Patient features that proved significant were 
age and shockable rhythm (VFIB), with VFIB being the 
most significant feature. This is not surprising since it is 
known from other studies that a non-shockable rhythm has 
a high correlation with brain death after resuscitation [4]. 
One also expects that younger people, on average, have a 
higher probability of recovery.  All other significant 
features were obtained from the frequency domain. These 
include the bandpowers in all frequency bands. For most 
of the other features, the delta band proved most important. 
Fitting a line to the log of the PSD for the delta band proved 
particularly informative, with a steeper slope and better fit 
being correlated with better neurological outcome. An 
opportunity for future work would be to better understand 
the relationship of these features to the pathophysiology of 
hypoxic-ischemic brain injury.  

A drawback of our method for selecting features, based  
solely on significance, is overtraining. Additionally, the 
score was only weakly correlated with the selection of   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EEG channels. We believe maintaining localization 
information from electrodes is important, however, it may 
prove useful to investigate signals constructed from other 
combinations of electrodes. Another potential area for 
improvement would be to incorporate information based 
on pathophysiology domain knowledge in addition to our 
frequency-domain derived features. 
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